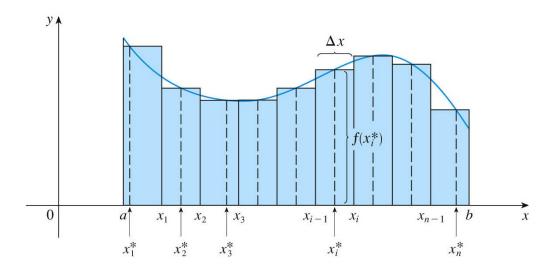
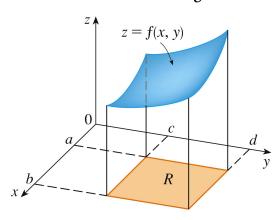
Lesson 22. Double Integrals over Rectangles

0 Warm up

Example 1. Find the value of


a.
$$\sum_{i=2}^{4} i =$$

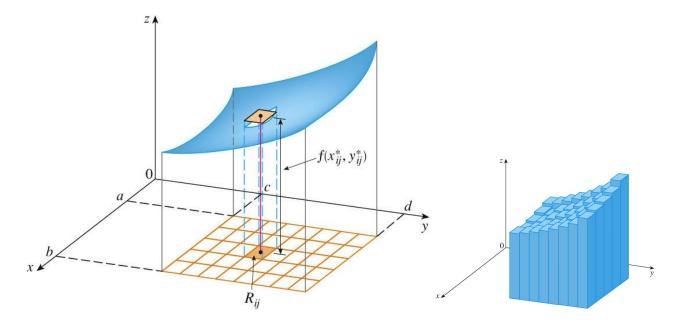
b.
$$\sum_{i=1}^{3} \sum_{j=1}^{2} ij =$$


1 Review: area and integrals

• The definite integral of a single-variable function:

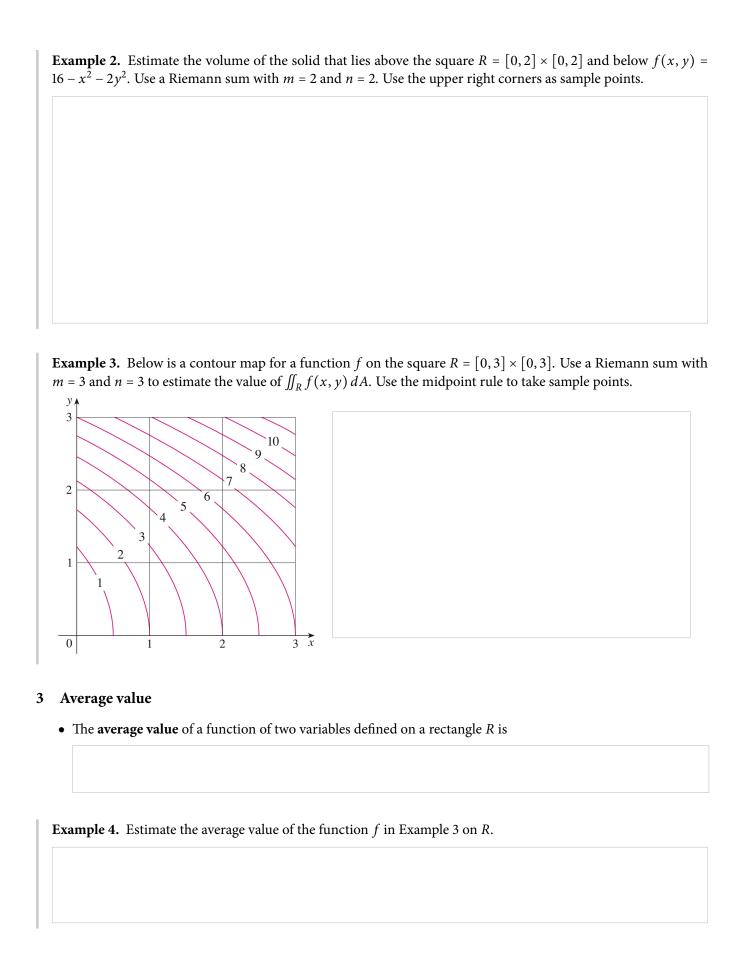
$$\int_{a}^{b} f(x) dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

2 Volume and double integrals


• Let *R* be a rectangle in the *xy*-plane:

$$R = [a, b] \times [c, d] = \{(x, y) : a \le x \le b, c \le y \le d\}$$

- Let f(x, y) be a function of two variables
- What is the volume of the solid above *R* and below the graph of *f*?


• Idea:

- Divide *R* into subrectangles of equal area ΔA
 - \diamond Grid with *m* columns (*x*-direction) and *n* rows (*y*-direction)
- For each subrectangle R_{ij} :
 - \diamond Choose a **sample point** (x_{ij}^*, y_{ij}^*)
 - \diamond Compute the volume of the (thin) rectangular box with base R_{ij} and height $f(x_{ij}^*, y_{ij}^*)$.
- o Add the volumes of all these rectangular boxes

- Estimated volume:
 - o This is called a double Riemann sum
- The **double integral** of f over the rectangle R is

- How do we choose sample points in each subrectangle?
 - o Upper right corner
 - o Lower left corner
 - Midpoint rule: center of subrectangle
- If $f(x, y) \ge 0$, then the volume V of the solid that lies above the rectangle R and below the surface z = f(x, y) is

4 Iterated integrals

- **Partial integration** with respect to *x*: $\int_a^b f(x, y) dx$
 - Regard *y* as a constant (i.e., fixed, coefficient, etc.)
 - Integrate f(x, y) with respect to x from x = a to x = b
 - \circ Results in an expression in terms of y
- Partial integration with respect to *y* defined in a similar way
- Iterated integrals: work from the inside out

$$\circ \int_{c}^{d} \int_{a}^{b} f(x, y) dx dy = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) dx \right] dy$$

- ♦ Integrate first with respect to x from x = a to x = b (keeping y constant)
- \diamond Integrate resulting expression in y with respect to y from y = c to y = d

$$\circ \int_a^b \int_c^d f(x,y) \, dy \, dx = \int_a^b \left[\int_c^d f(x,y) \, dy \right] dx$$

- ♦ Integrate first with respect to from
- ⋄ Integrate resulting expression in with respect to from

Example 5. Evaluate $\int_0^3 \int_1^2 x^2 y \, dy \, dx$.

Example 6. Evaluate $\int_{1}^{2} \int_{0}^{3} x^{2}y \, dx \, dy$.

• Fubini's theorem for rectangles. If $R = [a, b] \times [c, d]$, then:						
(∘ (<i>f</i> needs to satisfy so	me conditions, e.g.	f is continuous or	n <i>R</i>)		
(Double integrals ove 	r rectangles can be e	evaluated using ite	erated integrals		
(o Order of integration	does not matter!				
amp	ple 7. Evaluate $\iint_R (x - x)^{-1} dx$	$3y^2$) dA , where $R =$	$[0,2] \times [1,2].$			
		, , .				
	ple 8. Find the volume		bounded by the s	surface $x^2 + 2y^2 +$	z = 16, the planes	sx = 2 an
: <i>Z</i> , a	and the three coordinat	e pianes.				

Example 9. Evaluate $\int_0^1 \int_0^1 y e^{xy} dy dx$.						